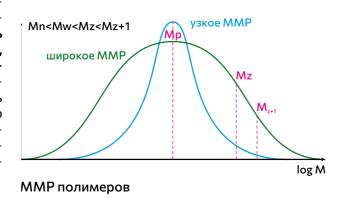

Жидкостный хроматограф

Скороход

Для анализа полимеров методом эксклюзионной хроматографии


Жидкостный хроматограф «Скороход» для анализа полимеров методом эксклюзионной хроматографии

Гель-проникающая (ГПХ), гель-фильтрационная хроматография (ГФХ) или эксклюзионная хроматография – это разновидность жидкостной хроматографии, которая позволяет разделять макромолекулы по размерам их клубков в растворе при прохождении через пористый сорбент. Причем размер пор сорбента определяет диапазон разделяемых молекулярных масс (размеров макромолекулярных клубков). Основным отличием эксклюзионной хроматографии от адсорбционной является отсутствие всяких взаимодействий разделяемых молекул с поверхностью сорбента.

Разделение происходит от больших клубков к малым только благодаря различию в гидродинамических размерах, и как следствие, различной способности макромолекул проникать в поры сорбента.

ГПХ является одним из основных методов характеризации полимерных и олигомерных продуктов, так как позволяет одновременно определять средние моменты молекулярных масс (Мп, Мw, Mz, Mz+1 и т.д.) и молекулярно-массовое распределение (ММР). В свою очередь, физико-механические свойства, способы переработки и область применения полимеров зачастую зависят именно от этих параметров. В таблице ниже представлены корреляции основных вязкоупругих и физико-механических свойств полимеров в зависимости от изменения ММ и ММР.

	Предел прочности	Растяжение	Предел текучести	Прочность	Хрупкость	Твердость
мм 🕇	+	+	+	+	+	+
ммр ¥	+	-	-	+	-	-

	Стойкость к истиранию	Температура размягчения	Вязкость расплава	Адгезия	Химическая устойчивость	Растворимость
мм ∱	+	+	+	-	+	+
ммр ↓	+	+	+	-	+	0

«+» – улучшение показателя; «-» –ухудшение показателя; 0 –незначительное влияние

Таким образом, ГПХ является незаменимым инструментом при разработке новых полимерных материалов, синтезе, производстве и контроле качества полимеров в разных областях промышленности, а также вкупе с другими аналитическими методами – при мониторинге загрязнений объектов окружающей среды или пищевых продуктов. В серии ВЭЖХ «Скороход» для ГПХ доступны как аналитические, так и препаративные системы для выделения и фракционирования полимеров.

2

Области применения ГПХ полимеров

Фармацевтическая промышленность (ОФС.1.2.1.2.0007)

- Связующие: ПВП, ПЭГ, пектин, хитозан, метилцеллюлоза, крахмал.
- Оболочки: желатин, сложные эфиры целлюлозы, ПЭГ, ГПМЦ.
- Дезинтегранты: карбоксиметилцеллюлоза, циклодекстрин, крахмал.
- Агенты для контролируемой доставки лекарств: поликапролактам, сополимеры полилактида и гликолида, этилцеллюлоза, метакриловые сополимеры.
- Загустители: гидроксиэтилцеллюлоза.

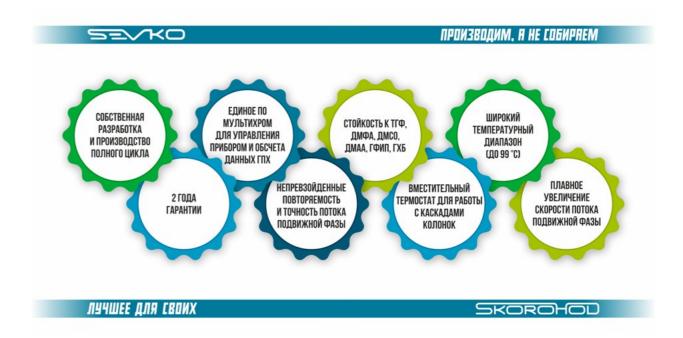
Пищевая промышленность

- Пищевые добавки: пектин, карбоксиметилцеллюлоза, крахмал, пуллулан, декстран, желатин, камедь, гуммиарабик.
- Ароматизаторы: мальтодекстрин.
- Глицидиловые эфиры в растительных маслах: моно-, ди- и триглицериды.
- Восковые покрытия: пчелиный воск, парафин, карнаубский воск.

Нефтехимическая и полимерная промышленность

- Добавки в буровые растворы: гуаровые смолы и их производные.
- Полимеры инженерного назначения: ПЭЭК, ПБТ, ПЭТФ.
- Эластомеры: полибутадиен, полиизопрен, полистирол-бутадиеновый каучук, ПДМС.
- Термопласты: полистирол, ПВХ, сложные полиэфиры (ПЭТФ), полиамиды, полиимиды, поликарбонаты, полиуретаны, полиакрилаты (ПММА), АБС-пластики, полифениленоксид, полифениленсульфид, ПТФЭ, полиацетали (ПФЛ или ПОМ).
- Смолы: эпоксидные смолы, алкидные смолы, фенол-формальдегидные смолы, меламиновые смолы, полиолы.

Экологический мониторинг

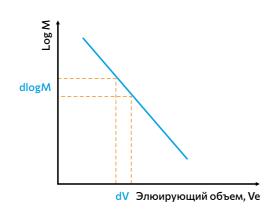

Микропластик: выделение фракций микропластика (полистирол, ПВХ, ПЭТФ, полиуретаны, полиакрилаты и др.) из почвы или воды и их последующий анализ.

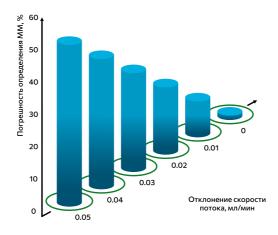
Научные изыскания

• Синтез, выделение и фракционирование новых полимерных продуктов.

Почему не всякий ВЭЖХ подходит для ГПХ? «Скороход» - всё продумано до мелочей

Несмотря на то, что базово жидкостной хроматограф для ГПХ полимеров состоит из тех же основных компонентов, что и любой ВЭЖХ, тем не менее фундаментальные особенности метода накладывают на них свой «отпечаток».

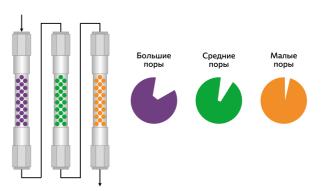



НАСОСЫ ДЛЯ ГПХ ПОЛИМЕРОВ

Поскольку в методе ГПХ ММ определяется из калибровочной кривой, представляющей из себя зависимость десятичного логарифма от элюирующего объема (времени удерживания), то к точности и повторяемости потока подвижной фазы предъявляются очень высокие требования. Так, эксперименты с маркером потока показывают, что отклонение скорости потока подвижной фазы от заданного всего в ± 0,5 % приводит уже к 10% погрешности в определении Mw, отклонение ± 1% к погрешности на уровне 20%.Обычно ГПХ полимеров длится от 45 минут до нескольких часов, и важно не только поддерживать постоянную скорость потока подвижной фазы на протяжении всего

этого времени, но и максимально близкую к установленной во избежание ошибок в определении ММ посредством калибровочной кривой. Любые, даже кратковременные флуктуации потока подвижной фазы при построении калибровочной кривой, а также анализе реальных полимерных образцов приведут к неправильному определению ММ.

Серия ВЭЖХ «Скороход» предлагает прецизионный насос с непревзойденной точностью установки скорости потока подвижной фазы ± 0,15%. Такой высокий показатель является следствием чрезвычайно точно изготовленных на собственном производстве механических компонентов привода насоса (кулачкового вала, ползунов). Повторяемость скорости потока 0,06% ОСКО (на уровне BЭЖX Shimadzuu Thermo) позволяет получать одинаковые результаты определения молекулярной массы из раза в раз.


Кроме того, в насосе Скорохода предусмотрена возможность постепенного увеличения скорости потока подвижной фазы до заданного, что позволяет предотвратить резкий скачок давления, и как следствие, необратимое повреждение частиц мягкого полимерного геля либо его упаковки в колонке.

ВМЕСТИМОСТЬ ТЕРМОСТАТА КОЛОНОК ДЛЯ ГПХ ПОЛИМЕРОВ

В ГПХ полимеров обычно используется 2 и более колонок, соединенных последовательно, для улучшения разрешения полимерных фракций. Дело в том, что чем больше ожидаемая ММ разделяемых полимерных фракций, тем более крупнозернистые колонки необходимо использовать, чтобы избежать сдвиговых деформаций полимерного клубка, и как следствие, неправильного определения ММ.

Для компенсации ухудшения разрешения при использовании крупных зерен сорбента используются каскады из одинаковых колонок. Кроме того, используя колонки с разным размером пор, соединенные последовательно, можно перекрыть широкий диапазон определяемых ММ.

При этом нужно иметь ввиду, что типовой размер аналитической колонки для ГПХ – 300 мм. Таким образом, для проведения ГПХ полимеров колоночные термостаты должны вмещать не менее 4-х колонок длиной 300 мм, что с легкостью позволяет интегрированный в насос стандартный термостат из серии «Скороход».

Размер частиц	Количество колонок
20 мкм	4
13 мкм	3
10 мкм	3
8 мкм	3
5 мкм	2
3 мкм	2

Высокие температуры

Поддержание повышенных температур является необходимостью при проведении ГПХ полимеров и преследует несколько целей.

- Уменьшение вязкости элюентов и улучшение разрешения
- Уменьшение давления в системе для предотвращения возможного повреждения колонок
- Растворение полимеров

Элюент	Рекомендуемая температура	
ТГФ, Вода, Хлороформ, Толуол, ГФИП	30 - 40 °C	
ДМФА, ДМСО, ДМАА, НМП	60 – 90 °C	

Термостаты колонок из серии «Скороход» поддерживают температуры вплоть до 99°C и позволяют проводить ГПХ полимеров любой химической природы, исключая полиолефины, для которых применяются специализированные высокотемпературные ГПХ-системы.

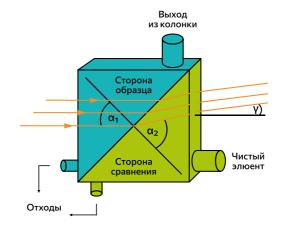
Стабильность поддержания температуры

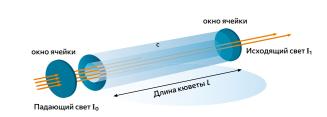
Стабильность поддержания температуры колонок не менее важна, чем постоянство и точность скорости потока во избежание систематических ошибок при определении ММ. Флуктуации температуры приводят к изменению времени удерживания, и как следствие, неправильному определению ММ. При проведении анализа методом ГПХ важно быть уверенным, что температуры колонок при построении калибровочной зависимости и измерении реальных образцов идентичны. Стабильность поддержания температуры термостатов колонок из серии «Скороход» составляет ±0.1°С и исключает сдвиги времен удерживания.

СТОЙКОСТЬ МАТЕРИАЛОВ К АГРЕССИВНЫМ РАСТВОРИТЕЛЯМ

Все материалы, используемые в конструкции Скорохода, обладают инертностью даже к специфическим растворителям, таким как ТГФ, хлороформ, толуол, ДМФА, ДМСО, ДМАА, ГФИП, применяемыми в ГПХ органорастворимых полимеров, а также к растворителям обращенной и нормальной фазы.

Уплотнения плунжеров, роторы кранов высокого и низкого давления, колпачки обратных клапанов сделаны из стойких полимерных материалов (фториророванных полимеров и полиариленов). Камеры дегазации и вакуумный насос дегазатора являются собственной разработкой, что уникально даже по меркам крупнейших западных производителей (Shimadzu, Agilent, Thermo, Waters). Они не содержат в своем составе ПЭЭК, как камеры Systec (США) или Flom (Япония) в своем стандартном исполнении, которыми комплектуются все другие ВЭЖХ-системы.




Полная локализация даже этих нишевых компонентов на семейном предприятии Sevko&Co, позволяет не только работать с любыми органическими растворителями, но и не зависеть от самых дорогих западных комплектующих в составе любой ВЭЖХ-системы (камер дегазации и вакуумного насоса), требующих периодической замены, при этом получить выигрыш в универсализации.

Детекторы для ГПХ полимеров

В серии ВЭЖХ «Скороход» предлагаются концентрационные детекторы для определения ММ полимеров из калибровочной зависимости относительно стандартных образцов с известной ММ. Эти детекторы позволяют определить количество полимера, элюируемого из колонки в каждый момент времени.

$$I = K_{A} \times \sum_{i} (K_{obp} \times C_{obp} \times M^{x})$$

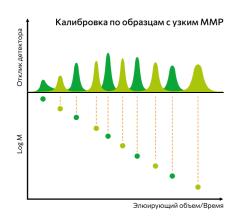
 $K_{_{oбp}}$ = dn/dc (инкремент показателя преломления) для РФД; $K_{asp}^{oop} = \chi$ (коэффициент экстинкции) для СФД/ДМД;

Помимо классического универсального рефрактометрического детектора, в линейке предлагаются структурно-селективные фотометрические детекторы. Они могут выступать не только в качестве более чувствительных концентрационных при анализе полимеров, содержащих хромофорные группы, но и использоваться для определения молекулярно-массовых характеристик сополимеров и их композиционного состава в комбинации с РФД.

8 elab.ru

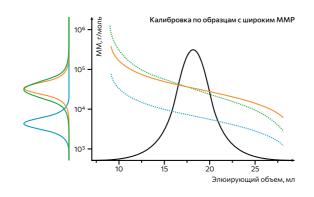
0,2 Элюирующий объем, Ve, мл Элюирующий объем, Ve, мл

Количественный анализ блок-сополимера


$$P\Phi \mathcal{A} = k_1^{p\phi \mathcal{A}} \times c_1 + k_2^{p\phi \mathcal{A}} \times c_2$$

 $C\Phi \mathcal{A} = k_1^{c\phi \mathcal{A}} \times c_1 + k_2^{c\phi \mathcal{A}} \times c_2$

$$w_1 = \frac{c_1}{c_1 + c_2}$$



Программное обеспечение для ГПХ полимеров

- Сбор и регистрация результатов эксклюзионной хроматографии.
- Выполнение градуировки хроматографической системы методами узких и широких фракций.
- Определение молекулярно-массового распределения (ММР) анализируемой пробы, средневзвешенного и среднечисленного значений молекулярной массы(Mw, Mn, Mz, Mz+1) путем суммирования по всем интервалам, на которые разбивается анализируемая область хрома-
- Определение средневзвешенного и среднечисленного значений молекулярной массы для наиболее легкой и наиболее тяжелой фракций исследуемого образца, которые выделяются пределами, задаваемыми пользователем.
- Таблица величин Mn и Mw по временным срезам с заданным интервалом времени.

Построение калибровки по образцам с узким ММР

Построение калибровки по образцам с узким и широким ММР (подбор коэффициентов k - ордината и α – угол наклона в уравнении МКХ)

elab.ru

Технические характеристики

Насосы серии НЖХ-1000

	Аналитические	Полупрепаративные	Препаративные	
Тип	Последовательный плунжерный		Параллельный плунжерный	
Элюирование	 Изократическое По 4-м компонентам на стороне низкого да По 2-м компонентам на стороне высокого да 			
Исполнение	Н	ержавеющая сталь или инертное (ПЭЭ	K)	
Максимальное рабочее давление	65 МПа или 35 МПа 30 МПа (при максималь		ьной скорости потока)	
Диапазон скорости потока	0,001 – 10 мл/мин	0,001 -40 мл/мин	0,001 — 150 мл/мин	
Повторяемость скорости потока	0,06 % OCKO			
Точность установки скорости потока	± 0,15 %			
Пульсации давления	≤1%			
Точность формирования градиента	± 0,5 %			
Рабочий диапазон рН	1-14			
Автоматическая система промывки плунжерного пространства	Есть			
Опции				

- Установка клапана на 2 или 4 канала для создания градиента на стороне низкого давления или автоматического выбора растворителя
- Формирование градиента на стороне высокого давления при помощи 2-х насосов

Взаимозаменяемые быстросменные головки в сборе для аналитических и полупрепаративных насосов:

- микроголовка: 0,001 4 мл/мин
- аналитическая головка: 0,001 10 мл/мин

полупрепаративная головка: 0,001 - 40 мл/мин

Вакуумные мембранные дегазаторы серии ДМВ-1000

Тип	Безгелиевый вакуумный	
Количество каналов	от 1 до 8	
Материал камер дегазации	Нержавеющая сталь	
Материалы, контактирующие с подвижной фазой	Нержавеющая сталь, фторопласт-4МБ	

Лотки для бутылей

Тип	Стандартный	
Количество вмещаемых бутылей	6х1л	
Количество бутылей в комплекте	от 1 до 4 (1 л)	
Количество крышек в комплекте	от 1 до 4, GL-45	
Регулятор давления	Нет	
Манометр	Нет	
Преимущества	_	

10

Технические характеристики

Термостаты колонок серии ТК-1000

	Интегрированный* модуль	Отдельный модуль		
Тип	Твердотельный Воздушно-циркуляционный			
Диапазон поддерживаемых температур	(комн. – 10) – 99 °С			
Точность установки температуры	±0.5			
Стабильность поддержания температуры	±0.1			
Максимальная вместимость	4 колонки x 300 мм 6 колонок x 300 мм			
Возможность установки переключающих кранов Нет Есть, до 2-х штук		Есть, до 2-х штук		
Опции				
Предварительный нагрев подвижной фазы до входа в колонку (англ. preheater)				

^{*}Термостат встраивается в насос

Автодозаторы серии АДХ-1000

	АДХ-1000	АДХ-1000Т		
Тип	Прямое дозирование пробы из иглы (англ. direct injection, split-loop, flow-through needle, needle-in-loop)			
Исполнение	Нержавеющая сталь	Нержавеющая сталь или инертное (ПЭЭК)		
Максимальное рабочее давление	65 МПа и	65 МПа или 35 МПа		
Диапазон дозирования	0,1 - 1	0,1 – 100 мкл		
Шаг дозирования	0,01	мкл		
Вместимость	153 виалы х 2 млили 3	х 96-луночных планшета		
Термостатирование образцов	Нет	5 – 55 °C		
Перекрестное загрязнение	<0,0>	<0,002 %		
Время одного цикла (с промывкой иглы до и после инжекции)	5	50 c		
Рабочий диапазон рН	1-14			
Функция автоматической пробоподготовки		Разбавление, добавление дериватизующего агента, внутреннего стандарта, совместная инжекция		
Функция перекрывающихся инжекций	Ec	Есть		
Промывка дозирующей линии (игла + петля)	 Непрерывная промывка подвижной фазой внутри Промывка снаружи промывочной жидкостью Программирование промывки 			
	Опции			
Увеличение объема вводимой пробы до 2 500 мкл				
Кастомизированные держатели с автоматическим распоз	наваниемдля любых типов сосудов			
Автоматический выбор промывочной жидкости из 3-х				
Установка дополнительного инжекционного крана высоко (одновременное или последовательное дозирование)	ого давления для создания двухканальных схем			

Технические характеристики

Детекторы серии 1000

	СФД-1000	дмд-1000	
Диапазон длин волн	190 – 800 нм		
Длины волн	Переключаемые, 2 длины волны из диапазон Сканирование спектра		
Источники излучения	D2 и W	лампы	
Термостатирование оптической схемы и измерительной ячейки	Есть		
Ширина щели	8 нм Переменная		
Встроенная ячейка	10 мм, 12 мкл		
Материал ячейки	Нержавеющая сталь или ПЭЭК		
Частота опроса сигнала	100 Гц		
Точность установки длины волны	± 1 нм		
Линейность	до 2,5 е.о.п.	до 2,0 е.о.п.	
Шум	≤2,0 × 10 ⁻⁵ e.o.π.	≤2,5 × 10 ⁻⁵ е.о.п.	
Дрейф	≤3,0 × 10 ⁻⁴ e.o.π./ч		
	Опции		
Установка микроячеек с длиной оптического пути ≤10 мм			

	РФД-1000
Диапазон показателя преломления	1,00 — 1,75 ед. рефр.
Два независимых контура контроля температуры оптического блока с измерительной ячейкой	Есть
Встроенная ячейка	8 мкл
Максимальное рабочее давление для ячейки	8 MΠa
Частота опроса сигнала	100 Гц
Время стабилизации базовой линии	≤ 30 мин
Автоматическое обнуление показаний детектора	
Автоматическая настройка оптического баланса	Есть
Автоматическая промывка ячейки	
Опции	
Установка крана для рецикла и экономии растворителя	

^{*} По запросу доступен детектор испарительного светорассеяния (ELSD). Подробную информацию уточняйте у вашего менеджера.

Автоматические коллекторы фракций для любых типов приемных сосудов, переключающие краны, краны для сбора фракций, полуавтоматический ручной инжектор

12 §- (O) PACILIVI

Для заметок

Для заметок

ООО «Е-ЛАБ» - официальный дистрибьютор SEVKO & Со на территории России, стран СНГ и Грузии.

119334, г. Москва, ул. Косыгина, д. 13, к. 1 Тел. +7 (495) 933-0-933 | hello@elab.ru | elab.ru ООО «Е-Лаб» | ИНН 5047273901 | КПП 504701001