

Аминокислотный анализатор АКА-1000

На базе жидкостного хроматографа «Скороход»

Аминокислотный анализатор на базе жидкостного хроматографа «Скороход»

Аминокислотный анализ широко применяется в лабораторной практике различного профиля, что и неудивительно, ведь аминокислоты являются строительным материалом для белков и основой нормального углеводного и липидного обмена. Ниже приведены наиболее распространенные объекты исследований, для которых аминокислотный анализ незаменим и несет ценнейшую информацию.

Продукты питания, напитки, корма и комбикорма

Качественный и количественный состав аминокислот определяет ценность продуктов питания и кормов, помогает скорректировать рацион в случае необходимости.

Лекарственные препараты

Качественный и количественный состав аминокислот в белковых, пептидных и других фармацевтических препаратах позволяет установить их подлинность. Кроме того, аминокислотный анализ может быть использован в качестве дополнительного инструмента при анализе структуры белка и пептида, а также для оценки стратегий фрагментации в пептидном картировании и для обнаружения атипичных аминокислот, которые могут присутствовать в белке или пептиде (ОФС.1.2.1.0025.18).

Биологические жидкости

Уровень аминокислот в крови и их производных позволяет оценить состояние аминокислотного обмена, диагностировать или подтвердить нарушение обмена аминокислот и ряд других заболеваний, связанных с их метаболизмом.

Почему «постколонка»?

Как известно, анализ аминокислот (АК) методом ВЭЖХ проводят с использованием методов предколоночной или постколоночной дериватизации, так как сами по себе они не поглощают свет в УФ — и видимой области спектра. Аминокислотный анализатор от компании Sevko & Со применяет подход постколоночной дериватизации, имеющей ряд преимуществ в точности и стабильности получаемых результатов вне зависимости от сложности (загрязненности) матрицы, концентрации гидролизованного белка. При этом, что немаловажно, метод является полностью автоматизированным. Посмотрим на сравнительную таблицу ниже, чтобы убедиться в приведенном тезисе.

	Предколоночная дериватизация	Постколоночная дериватизация
~	Обращено-фазовый механизм распределения	 Ионообменный механизм разделения
~	Разделяются дериваты АК	▼ Разделяются чистые АК
~	Сильное влияние матрицы на результаты анализа (образование побочных дериватов, конкурирующие реакции, ингибирование основной реакции): сниженная точность анализа и воспроизводимость по времени удерживания и площади пиков	▼ Влияние матрицы отсутствует, так как ее компоненты не удерживаются на сорбенте
~	Нестойкость дериватов, полученных при помощи ортофталевого реагента (особенно влияет на воспроизводимость наиболее удерживаемых АК: лизин, гистидин триптофан, аргинин и т.д.)	✓ Не имеет значения, так как дериваты мгновенно поступают на детектор, а не через ~45 мин, как в методе с предколоночной дериватизацией. Кроме того, вся система инертизированна
~	Невозможность получения стабильных количественных результатов	▼ Воспроизводимые результаты определения всех АК
~	Быстрая деградация ортофталевого реагента: необходимость готовить его каждый день заново	 Стабильность дериватизующих реагентов вне зависимости от их природы: нингридрин или ортофталевый реагент, так как вся система инертизированна
•	Отсутствие возможности автоматизации при использовании фенилизотиоцианата в качестве дериватизующего агента. Ручная подготовка пробы: нагрев, высушивание досуха и перерастворение.	 Полная автоматизация процесса вне зависимости от используемого дериватизующего агента: нингидрина или ортофталевого реагента

Благодаря указанным преимуществам метода в Европе именно **постколоночная деривати- зация является «золотым стандартом»** при анализе АК и используется в качестве поточного метода, а не от случая к случаю, если нужно провести единичный анализ, в отличие от предколоночной дериватизации.

AKA-1000. **Аминокислотный** анализатор как и вся продукция компании Sevko & Co. собственных мощнопроизводится на стях компании на площадке в Подмосковье по полному циклу. Аминокислотный анализатор представляет из себя жидкостной хроматограф «Скороход», в котором все детали и механизмы, соприкасающиеся с подвижной фазой и пробой, выполнены из инертных материалов (ПЭЭК, ПТФЭ, сапфир), что позволяет использовать высокосолевые буферы в качестве подвижной фазы, причем в приборе отсутствуют компоненты из западных стран, что обеспечивает

- быстрые сроки производства и поставки (60 календарных дней);
- стабильность и ритмичность производственного процесса;
- независимость от санкционного давления третьих стран;
- расширенный гарантийный период (2 года).

Аминокислотный анализатор АКА-1000 — это законченное решение для анализа аминокислот, которое готово к работе сразу из коробки. В комплект анализатора входят все необходимые реактивы на 500 анализов, приготовленные в лаборатории компании Sevko & Co, а также колонки собственного производства:

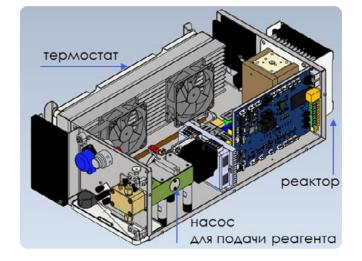
- Буфер А1 Na+/Li+ система
- Буфер В1 –Na+/Li+ система
- Буфер С1 -только Li+ система
- Раствор для регенерации
- Раствор для разбавления образцов
- Нингидриновый реагент
- Стандартная смесь аминокислот для построения калибровки
- Аналитическая колонка с ионообменной смолой, в Na+ форме, 150 х 4,6 мм, 7 мкм для анализа до 20-ти основных аминокислот. Эту колонку обычно применяют при анализе гидролизатов белков в простых матрицах: кормах и комбикормах, фармпрепаратах.

или

- Аналитическая колонка с ионообменной смолой, в Li+ форме, 150 х 4,6 мм, 7 мкм для анализа до 50-ти аминокислот. Эту колонку обычно применяют при проведении анализа в сложных матрицах: биологических жидкостях, экстрактах из растений, пищевых продуктах и напитках.
- Фильтр-ловушка для аммиака
- Демонстрация методики на вашей площадке
- Методическая и сервисная поддержка в течение всего жизненного цикла анализатора от Производителя в РФ

ЛУЧШЕЕ ДЛЯ СВОИХ

elab.ru


SEVKO

ПРОИЗВОДИМ. Я НЕ СОБИРЯЕМ

Классическая конфигурация анализатора снабжена спектрофотометрическим детектором с двумя фиксированными длинами волн (440 и 570 нм) и светодиодами в качестве источника излучения, а также модулем постколоночной дериватизации, представляющем из себя стандартный модуль из серии «Скороход», в который интегрированы термостат колонок, насос для подачи нингидринового реагента и высокотемпературный реактор.

Модуль постколоночной дериватизации автономен и может быть сочленен с любой ВЭЖХ-системой. Эта разработка компании Sevko & Со имеет более чем десятилетний опыт успешного применения по всей России и странам ближнего зарубежья и явилась первым модулем, выпущенным компанией на рынок в 2013 г. и заложившим фундамент всему многообразию ВЭЖХ из серии «Скороход».

4

Альтернативная конфигурация анализатора предполагает использование флуориметрического детектора со светодиодными источниками излучения и ортофталевого дериватизующего реагента, позволяющего определять аминокислоты в меньших концентрациях. Однако нужно иметь ввиду, что для того, чтобы определять не только первичные, но и вторичные аминокислоты в данном случае понадобится дополнительное предварительное окисление смеси, что снижает выигрыш в чувствительности метода.

В обоих конфигурациях используются светодиодные детекторы, имеющие ряд серьезных эксплуатационных преимуществ.

- Специфичная длина волны в отличие от ламп широкого спектра
- Более высокая светоотдача по сравнению с лампами широкого спектра
- Более высокая стабильность излучения, чем у ламп широкого спектра

Более низкие пределы обнаружения

- Не требуют прогрева перед применением
- Служат в разы больше ламп широкого спектра, практически вечные, отсюда существенная экономия ресурсов на обслуживание
- Гораздо более низкая стоимость детектора без компромиссов с чувствительностью: не требуется монохроматора, фильтров, источник питания для светодиодов дешевле, чем для ламп.

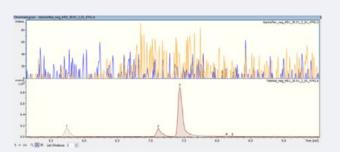
Еще больше технических решений для уверенности в результатах анализа

Беспульсационные насосы для подачи реагента и элюента

Последовательный плунжерный механизм для беспрерывной подачи реагентов, исключающей нестабильность и пульсации насоса. Благодаря высокой частоте и малому ходу (8 мкл) плунжеров вклад в пульсации системы отсутствует в отличие от традиционных длинноходовых насосов.

Производительность и высочайшая точность дозирования

Уникальный для российского рынка автодозатор прямого дозирования пробы из иглы («split-loop»), обладающий высоким быстродействием (один цикл дозирования пробы с промывкой иглы до и после анализа составляет лишь 50 с) и вместимостью (153 х 2 мл) увеличивает производительность лаборатории кратно по сравнению с автодозаторами аспирационного типа («pulled-loop»). Высочайшая точность ввода пробы обеспечивается дозирующим насосом с шаговым двигателем разрешением 0,08 мкл на 1 шаг. Учитывая, что он используется в режиме деления шага 1 к 16, то дискретность дозирования получается равной всего-навсего 0,005 мкл, что позволяет дозировать объемы во всем диапазоне от 0,1 до 100 мкл с шагом 0,01 мкл точно и воспроизводимо.



Нулевой кросс-перенос

Нулевой кросс-перенос обеспечивается проточным дизайном иглы, отсутствием лишних элементов в конструкции (инжекционный порт и дозирующий кран совмещены: отсутствует трансферная линия, нет буферной трубки в отличие от автодозаторов типа «pulled-loop»), а также активной промывкой внешней поверхности иглы. Внутренняя поверхность иглы непрерывно промывается подвижной фазой. Отбирается строго ваш аналитический объем. Нет потерь пробы, как в автодозаторах типа «pulled-loop», на заполнение длинной буферной трубки.

Macc-спектры, полученные на BrukerMaxis Impact HD (Q-TOF) с хроматографом «Скороход» в качестве фронтального ВЭЖХ: сверху - пустая проба; снизу растительный экстракт. Условия: однократная промывка

Инертизация всей системы

Дериватизующие реагенты, а также буферы, как и все жидкостные линии системы, находятся под подушкой инертного газа (N2), что позволяет избежать окислительной деструкции и загрязнения реагентов. Лоток для бутылей с системой подачи инертного газа снабжен регулятором давления. Специальные крышки с цилинтрическими кранами позволяют поддерживать давление газа в системе.

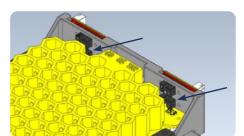
Интегрированный в насос или модуль для постколоночной дериватизации термостат колонок

Термостат колонок позволяет поддерживать высокие температуры (до 99 °C), необходимые для анализа аминокислот, с высокой точностью (±0.5 °C) и стабильностью (±0.1°C).

Высокотемпературный реактор

Регулируемая температура реактора от 50 до 150 °C с катушкой-капилляром длиной до 30 м для проведения реакции дериватизации. Автоматическая промывка капилляра после каждой инжекции предотвращает его закупорку. Защита от перегрева и мониторинг давления в режиме реального времени позволяют проводить реакцию при высоких температурах.

Большие сенсорные экраны на каждом модуле


Позволяют отслеживать текущие и установленные параметры системы, производить автоматическую промывку жидкостных линий, экстренно выключать систему в случае возникновения внештатных ситуаций. Интуитивно понятная цветовая кодировка и возможность работы в перчатках делают повседневные операции комфортными и удобными для пользователя.

образец 132	15.1	²c 22

Система безопасности заботится об операторе и надлежащем функционировании ВЭЖХ

- датчики течи во всех модулях;
- датчик открытия двери автодозатора с блокировкой движения манипулятора с иглой гарантирует отсутствие травм оператора;
- датчик распознавания типа планшета и его наличия предотвращает неправильную установку планшета и повреждение иглы;
- датчик отсутствия виалы: игла никогда не заколет воздух;
- система защиты иглы от изгиба или излома;
- защита от выхода давления за установленные пределы;
- защита от перегрева источников излучения в фотометрических детекторах.

Технические характеристики компонентов системы

{O} Hacoc HЖX-1000AГ4(Т)И

	Аналитический	
Тип	Последовательный плунжерный	
Элюирование	По 4-м компонентам на стороне низкого давления	
Исполнение	Инертное (ПЭЭК)	
Максимальное рабочее давление	35 МПа	
Диапазон скорости потока	0,001 — 10 мл/мин	
Повторяемость скорости потока	0,06 % OCKO	
Точность установки скорости потока	± 0,15 %	
Пульсации давления	≤1%	
Рабочий диапазон рН	± 0,5 %	
Автоматическая система промывки плунжерного пространства	1-14	
Точность формирования градиента	Есть	
Опции		
Бинарный градиент на стороне высокого давления		

💮 Лоток для бутылей с системой подачи инертного газа

Тип	С системой подачи инертного газа	
Количество вмещаемых бутылей	6х1л	
Количество бутылей в комплекте	от 1 до 4 (1 л)	
Количество крышек в комплекте	от 1 до 4, GL-45, 4 цилиндрических крана	
Регулятор давления	Есть	
Манометр	Есть	
Преимущества	Предотвращает ■ загрязнение реактивов и окислительную деструкцию чувствительных к кислороду соединений; ■ попадание пыли в подвижную фазу; ■ рост микроорганизмов. Способствует ■ отсутствию паров растворителей	

Термостат колонок серии ТК-1000

	Интегрированный∗ модуль		
Тип	Твердотельный		
Диапазон поддерживаемых температур	(комн. – 10) – 99 °C		
Точность установки температуры	±0.5 °C		
Стабильность поддержания температуры	±0.1 °C		
Максимальная вместимость	4 колонки х 300 мм		
Опции			
Предварительный нагрев подвижной фазы до входа в колонку (англ. preheater)			

^{*}Термостат встраивается в насос или модуль постколоночной дериватизации.

Технические характеристики

₹ОЗ Автодозатор АДХ-1000И∗

ABTOMOSATOP AMA TOUGHT		
	АДХ-1000И	
Тип	Прямое дозирование пробы из иглы (англ. direct injection, split-loop, flow-through needle, needle-in-loop)	
Исполнение	Инертное (ПЭЭК)	
Максимальное рабочее давление	35 МПа	
Диапазон дозирования	0,1 — 100 мкл	
Шаг дозирования	0,01 мкл	
Вместимость	153 виалы x 2 мл или 3 x 96-луночных планшета	
Термостатирование образцов	Нет	
Перекрестное загрязнение	< 0,002 %	
Время одного цикла (с промывкой иглы до и после инжекции)	50 c	
Рабочий диапазон рН	1-14	
Функция автоматической пробоподготовки	Разбавление, добавление дериватизующего агента,внутреннего стандарта, совместная инжекци	
Функция перекрывающихся инжекций	Есть	
Промывка дозирующей линии (игла + петля)	 Непрерывная промывка подвижной фазой внутри Промывка снаружи промывочной жидкостью Программирование промывки 	
Опции		
Увеличение объема вводимой пробы до 2 500 мкл		
Функция термостатирования образцов: 5 — 55 °C		
Кастомизированные держатели с автоматическим распознаванием для любых типов сосудов		
Автоматический выбор промывочной жидкости из 3-х		
Установка дополнительного инжекционного крана высокого давления для создания двухканальных схем (одновременное или последовательное дозирование)		

^{*}Возможна комплектация анализатора полуавтоматическим ручным инжектором.

Технические характеристики

£03

Детектор спектрофотометрический с фиксированными длинами волн ФФД-1000

	ФФД-1000
Диапазон длин волн	265 – 900 нм
Длины волн	Фиксированные, 440 и 570 нм
Источники излучения	Светодиоды
Встроенная ячейка	10 мм, 12 мкл
Материал ячейки	пээк
Частота опроса сигнала	100 Гц
Точность установки длины волны	±1нм
Линейность	до 2,5 е.о.п.
Шум ≤ 1,0 × 10 ⁻⁵ е.о.п.	
Дрейф	≤ 2,0 × 10 ⁻⁴ e.o.π./ч
	Опции

£0}

Модуль постколоночной дериватизации АРМ-1000Н(Т)

<i>₩</i>	APM-1000H	APM-1000HT
		111
Совместимость	С любой ВЭЖХ-системой	
Интегрированный реакционный капилляр	16 м для дериватизации нингидрином	
Диапазон поддерживаемой температуры реактора	азон поддерживаемой температуры реактора 50 — 150 °C	
Шаг температуры	1 ℃	
Активное охлаждение		
Защита от перегрева	Есть	
Мониторинг давления		
Интегрированный термостат колонок	Нет	Есть
Интегрированный дозирующий насос	Есть	
Тип	Последовательный плунжерный	
Исполнение	Инертное (ПЭЭК)	
Головка	Микроголовка	
Диапазон скорости потока	азон скорости потока 0,001 — 4 мл/мин	
Клапан	Двухкомпонентный на стороне низкого давления	
	Опции	
Любая другая длина капилляра в соответствии с аналитической задачей		
Аналитическая головка: 0,001 — 10 мл/мин		
Четырехкомпонентный клапан на стороне низкого давления		

Альтернативные применения постколоночной дериватизации

Постколоночная дериватизация является эффективным и распространенным методом не только для определения АК, например, в полном соответствии ГОСТ 32195-2013 (ISO13903:2005), ГОСТ 33428-2015, ГОСТ 54743-2011, ГОСТ 32799-2014, ГОСТ Р 59296-2021, ГОСТ 34132-2017, но и для широкого ряда соединений, которые сложно достоверно определить в малых концентрациях без использования цветных реакций.

Ниже приведен список основных аналитов, для которых можно использовать АКА-1000 с незначительными модификациями.

- Биогенные амины
- Редуцирующие и фосфорилированные редуцирующие сахара
- Анионы переходных и тяжелых металлов
- Монезин, наразин и салиномицин
- Мадурамицин аммония
- Семдурамицин натрия
- Гидрат гадодиамида
- Водорастворимые витамины В1, В2, В6 (ГОСТ 32903-2014)
- Афлатоксин В1 (ГОСТ 32251-2013)
- Афлатоксина В1 и суммы афлатоксинов В1, В2, G1 и G2 (ЕН-12955)

Если вы не нашли в списке интересующих вас соединений, обратитесь к вашему менеджеру. Мы обязательно адаптируем анализатор для решения именно вашей аналитической задачи.

12 **§-** LOD PAR

ООО «Е-ЛАБ» - официальный дистрибьютор SEVKO & Со на территории России, стран СНГ и Грузии.

119334, г. Москва, ул. Косыгина, д. 13, к. 1 Тел. +7 (495) 933-0-933 | hello@elab.ru | elab.ru ООО «Е-Лаб» | ИНН 5047273901 | КПП 504701001